	LCA120	Units
Blocking Voltage	250	V
Load Current	170	mA
Max On Resistance	20	Ω

Features

- Small 6 Pin Surface Mount and DIP Package
- Low Drive Power Requirements (TTL/CMOS Compatible)
- No Moving Parts
- High Reliability
- Arc-Free With No Snubbing Circuits
- $3750 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- No EMI/RFI Generation
- Machine Insertable, Wave Solderable
- Surface Mount and Tape \& Reel Versions Available
- Flammability classification rating of $\mathrm{V}-0$

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Aerospace
- Industrial Controls

Description

The LCA120 is a 1-Form-A solid state relay which uses optically coupled MOSFET technology to provide $3750 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS architecture. The optically-coupled input is controlled by a highly efficient GaAIAs infrared LED. the LCA120 can be used to replace mechanical relays and offers the superior reliability associated with semiconductor devices. Because they have no moving parts, they can offer faster, bounce-free switching in a more compact surface mount or through hole package.

Approvals

- UL Recognized: File Number E76270
- CSA Certified: File Number LR 43639-10
- Certified to: EN 60950, EN 41003, AS/NZS 3260, IEC 950

Ordering Information

Part \#	Description
LCA120	6 Pin DIP (50/Tube)
LCA120S	6 Pin Surface Mount (50/Tube)
LCA120STR	6 Pin Surface Mount (1000/Reel)

Pin Configuration

LCA120 Pinout
AC/DC Configuration

LCA120 Pinout

DC Only Configuration

Switching Characteristics of Normally Open (Form A) Devices

Absolute Maximum Ratings (@ $25^{\circ} \mathrm{C}$)

Parameter	Ratings	Units
Blocking Voltage	250	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	A
Input Power Dissipation	150^{1}	mW
Total Power Dissipation	800^{2}	mW
Isolation Voltage Input to Output	3750	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering Temperature DIP Package	+260	${ }^{\circ} \mathrm{C}$
Surface Mount Package (10 Seconds Max.)	+220	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate Linearly $1.33 \mathrm{mw} / \mathrm{C}$
${ }^{2}$ Derate Linearly $6.67 \mathrm{mw} / \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics @ 25 ${ }^{\circ} \mathrm{C}$						
Load Current (Continuous) AC/DC Configuration	-	I_{L}	-	-	170	mA
DC Configuration	-	I_{L}	-	-	200	mA
Peak Load Current	10 ms	$\mathrm{I}_{\text {LPK }}$	-	-	350	mA
On-Resistance AC/DC Configuration	$\mathrm{I}_{\mathrm{L}}=170 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	15	20	Ω
DC Configuration	$\mathrm{I}_{\mathrm{L}}=200 \mathrm{~mA}$	-	-	5	6	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=250 \mathrm{~V}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{T}_{\text {ON }}$	-	-	3	ms
Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$\mathrm{T}_{\text {OFF }}$	-	-	3	ms
Output Capacitance	50V; f=1MHz	$\mathrm{C}_{\text {OUT }}$	-	50	-	pF
Input Characteristics @ $25^{\circ} \mathrm{C}$						
Input Control Current	$\mathrm{I}_{\text {L }}$ Load Current	I_{F}	5	-	-	mA
Input Dropout Current	-	I_{F}	0.4	0.7	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$
Common Characteristics @ $25^{\circ} \mathrm{C}$						
Input to Output Capacitance	-	$\mathrm{C}_{1 / 0}$	-	3	-	pF

LCA120

PERFORMANCE DATA*

LCA120
Typical LED Forward Voltage Drop ($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$)

LCA120
Typical I_{F} for Switch Operation ($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$) (Load Current $=170 m A_{D C}$)

LCA120
Typical Turn-Off Time
($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$)

LCA120

LCA120
Typical On-Resistance Distribution ($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$)

LCA120
Typical I_{F} for Switch Dropout ($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$) (Load Current $=170 \mathrm{~mA}_{D C}$)

LCA120

LCA120
Typical Turn-On vs. Temperature (Load Current $=170 \mathrm{~mA}_{\mathrm{DC}}$)

LCA120

LCA120
Typical Turn-On Time ($\mathrm{N}=50$ Ambient Temperature $=25^{\circ} \mathrm{C}$) (Load Current = 170mA $A_{D C} ; I_{F}=5 m A_{D C}$)

LCA120

LCA120
Typical Turn-Off vs. Temperature (Load Current $=170 \mathrm{~mA}_{\mathrm{DC}}$)

*The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please contact our application department.

PERFORMANCE DATA*

LCA120
Typical LED Forward Voltage Drop

LCA120

LCA120
Typical Load Current vs. Load Voltage (Ambient Temperature $=25^{\circ} \mathrm{C}$)
$I_{F}=5 m A_{D C}$

LCA120
Typical Turn-On vs.LED Forward Current

LCA120
Typical I_{F} for Switch Operation
vs. Temperature

LCA120
Energy Rating Curve

LCA120
Typical Turn-Off vs.LED Forward Current

LCA120

CLARE
 An IXYS Compan

MECHANICAL DIMENSIONS

6Pin DIP Through Hole (Standard)

6Pin Surface Mount ("S" Suffix)

PC Board Pattern (Top View)

Tape and Reel Packaging for 6 Pin Surface Mount Package

Dimensions:
mm
(inches)

For additional information please visit our website at: www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

